Hide Media Panel
Your Browser does not support WebGL. Try the newest version of Firefox or Google Chrome.
You should see an interactive map here. However, your browser seems to not support JavaScript or you have JavaScript disabled for this web site. Please enable JavaScript or get a modern web browser like Firefox or Google Chrome.

References

Ahnert, F. (2003, 2009): Einführung in die Geomorphologie. 3. Auflage. Stuttgart: Verlag Eugen Ulmer: Stuttgart.

Backendorf, F., Rühl, I., Profe, J., Blankenhorn, V. (2012): Dokumentation der im Kurs „HydroChange“ durchgeführten Analysen zur multitemporalen Untersuchung der fluvialen Morphodynamik einer Sandbank im Neckar zwischen Ladenburg und Ilvesheim. Seminar: ‚Erfassung und Analyse von Laserscannerdaten in der Physischen Geographie‘ University of Heidelberg.

Caheny, P. (2012): GPU accelerated Realtime 3D Modeling with Microsoft Kinect. EPCC, Edinburgh, 55 p.

Eitel, J.U.H.; Williams, C.J.; Vierling,  L.A.; Al-Hamdan, O.Z. & Pierson,F.B. (2011): Suitability of terrestrial laser scanning for studying surface roughness effects on concentrated flow erosion processes in rangelands. Catena 87, pp. 398-407.

Geist, T.; Höfle, B.; Rutzinger, M. & Stötter, J. (2009): Laser scanning a paradigm change in topographic data acquisition for natural hazard management. In: Veulliet, E., Stötter, J., Weck-Hannemann, H.: Sustainable Natural Hazard Management in Alpine Environments. Heidelberg and others, pp. 309-344.

Heritage, G. & Large, A. (Eds.) (2009): Laser Scanning for the Environmental Sciences, 288 p. IPF (2013): OPALS – Orientation and Processing of Airborne Laser Scanning data. Institute of Photogrammetry and Remote Sensing Vienna University of technology. Available at: http://geo.tuwien.ac.at/opals/html/index.html (Accessed: 26. 09. 2013)

Hämmerle, M., Forbriger, M. & Höfle, B. (2013): Multitemporale 3D-Erfassung und GIS-Analyse fluvial-geomorphologischer Prozesse mit terrestrischem Laserscanning. In: Proceedings of the Geoinformatik 2013. Heidelberg, Germany, pp. 1-8.

Höfle, B., Mücke, W., Dutter, M.; Rutzinger, M. & Dorninger, P. (2009): Detection of building regions using airborne LiDAR - A new combination of raster and point cloud based on GIS methods. In: Car, A., Griesebner, G. & Strobl, J. (eds.) Geospatial Crossroads @ GI_Forum ’09: Proceedings of the Geoinformatics Forum, Salzburg, Wichmann, pp. 66–75.

Höfle, B. & Rutzinger, M. (2011): Topographic airborne LiDAR in geomorphology: A technological perspective. In: Zeitschrift für Geomorphologie, 55(2), pp. 1–29.

Höfle, B., Hollaus, M. & Hagenauer, J. (2012): Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. In: ISPRS Journal of Photogrammetry and Remote Sensing, 67(1), pp. 134-147.

Hohenthal, J., Alho, P., Hyyppa, J. & Hyyppa, H. (2011): Laser scanning applications in fluvial studies. In: Progress in Physical Geography 35(6), pp. 782-809.

Hollaus, M.; Aubrecht C.; Höfle, B.; Steinnacher, K., Wagner, W. (2011): Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data. Remote Sensing, 3 (3), pp. 503-523.

IPF (2013): OPALS – Orientation and Processing of Airborne Laser Scanning data. Institute of Photogrammetry and Remote Sensing Vienna University of technology.

Kraus, K. & Pfeifer, N. (2001): Advanced DTM generation from LiDAR data. In: International Archives of Photogrammetry and Remote Sensing, Vol. XXXIV, 3/W4, Annapolis, MD, USA, pp. 23-30.

Mallet, C., Bretar, F. & Soergel, U., (2008): Analysis of full-waveform LiDAR data for classification of urban areas. Photogrammetrie Fernerkundung Geoinformation (PFG) 2008 (5), 337–349.

Mandlburger, G., Hauer, C., Höfle, B., Habersack, H. & Pfeifer, N. (2009): Optimisation of LiDAR derived terrain models for river flow modelling. In: Hydrology and Earth Systems Sciences, 13(8), pp. 1453-1466.

Mandlburger, G., Höfle, B., Briese, C., Ressl, C., Otepka, J., Hollaus, J., Pfeifer, N. (2009): Topographische Daten aus Laserscanning als Grundlage für Hydrologie und Wasserwirtschaft. In:Österreichische Wasser- und Abfallwirtschaft 61, pp. 89 – 97.

Müller, L (2011): Terrestrisches Laser Scanning in der Geoarchäologie „Von der Punktwolke zum Modell“ Der Llamoca-Abri in der südperuanischen Andenwestkordillere (14° S) Bachelor Thesis. University Heidelberg.

Pfeifer, N. & Mandlburger, G. (2008): LiDAR data filtering and DTM generation. In: Shan, J. & Toth, CK. (eds.) Topographic Laser Ranging and Scanning - Principles and Processing. Taylor and Francis: London, pp. 307-334.

Pirovano, M. (2012): Kinfu – an open source implementation of Kinect Fusion + case study: implementing a 3D scanner with PCL. Dipartimento di Informatica, Milano, 20 p.

Riegl (2012): RISCAN Pro – Operating and Processing Software for Riegl 3D Laser Scanners. 2012. Available at: http://www.riegl.com/index.php?id=221 (Accessed: 26. 09. 2013)

Schmidt, K. H.(2007): Formbildung durch fluviale Prozesse. In: Gebhardt, H., Glaser, R., Radtke, U., Reuber, P. (Hrsg.): Geographie. Physische Geographie und Humangeographie. Spektrum: Heidelberg. pp. 289-294.

Shan, J. & Toth, C.K. (Eds.) (2008): Topographic laser ranging and scanning. CRC Press, 590 p.

Siart, C., Forbriger, M., Nowaczinski, E., Hecht, S. & Höfle, B. (2013): Fusion of multi-resolution surface (terrestrial laser scanning) and subsurface geodata (ERT, SRT) for karst landform investigation and geomorphometric quantification. In: Earth Surface Processes and Landforms, 38(10), pp. 1135-1147.

Vosselman, G. & Maas, H.-G. (2010): Airborne and Terrestrial Laser Scanning. Whittles Publishing. Dunbeath, 320 p.

Wang, W., Yang, X., Yao, T. (2012): Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. In: HYDROLOGIGAL PROCESSES 26, pp. 213 – 225.

Wenzel, K.; Rothermel, M.; Frischt, D.;Haala N. (2013): Image Acquisition and Model Selection for Multi-View Stereo. Institute for Photogrammetry, Stuttgart, 8 p.